Bolted joints with gaskets such as flexible box-shaped flange joints have been used in mechanical structures. The joints are usually used under internal pressure as well as other loadings such as thermal, impact loadings and so on. In designing the bolted flexible box-shaped flange joint with gaskets, it is important to evaluate the sealing performance of the joints under internal pressure and thermal conduction conditions. In this paper, the contact gasket stress distributions and changes in bolt load in the bolted flexible box-shaped flange joint with joint sheet gaskets subjected to internal pressure and thermal conduction condition are analyzed using the finite element method (FEM). The leakage tests were conducted using an actual box-shaped flange connection with a joint sheet gasket. Using the contact gasket stress distributions under internal pressure at an elevated temperature (Helium gas) obtained from the FEM calculations and the amount of the gas leakage measured in the experiment, the sealing performances are evaluated experimentally and numerically. In addition, the effect of the thermal conduction condition on the sealing performance is examined. Furthermore, a method how to determine the bolt preload of the flexible box-shaped flange joint at an elevated temperature for a given tightness parameter is demonstrated. Discussion is made on the sealing performance.

This content is only available via PDF.
You do not currently have access to this content.