BS 7910, the UK procedure for the assessment of flaws in metallic structures, was first published almost 30 years ago in the form of a fracture/fatigue assessment procedure, PD6493. It provided the basis for analysing fabrication flaws and the need for repair in a rational fashion, rather than relying on long-established (and essentially arbitrary) workmanship rules. The UK offshore industry in particular embraced this new approach to flaw assessment, which is now widely recognised by safety authorities and specifically referred to in certain design codes, including codes for pressure equipment. Since its first publication in 1980, PD6493/BS 7910 has been regularly maintained and expanded, taking in elements of other publications such as the UK power industry’s fracture assessment procedure R6 (in particular the Failure Assessment Diagram approach), the creep assessment procedure PD6539 and the gas transmission industry’s approach to assessment of locally thinned areas in pipelines. The FITNET European thematic network, run between 2002 and 2006, has further advanced the state of the art, bringing in assessment methods from SINTAP (an earlier European research project), R6, R5 and elsewhere. In particular, the FITNET fracture assessment methods represent considerable advances over the current BS 7910 methods; for example, weld strength mismatch can be explicitly analysed by using FITNET Option 2, and crack tip constraint through Option 5. Corrosion assessment methods in FITNET are also more versatile than those of BS 7910, and now include methods for vessels and elbows as well as for pipelines. In view of these recent advances, the BS 7910 committee has decided to incorporate many elements of the FITNET procedure into the next edition of BS 7910, to be published c2012. This paper summarises the history of the development of BS 7910, its relationship with other flaw assessment procedures (in particular FITNET and R6) and its future.

This content is only available via PDF.
You do not currently have access to this content.