A multi-scale approach to brittle fracture of irradiated RPV steels has been developed within the EURATOM FP6 Integrated Project PERFECT, and the EC-sponsored ISTC Project 3072: “Modelling of Brittle and Ductile Fracture and Prediction of Irradiation Damage Effects on Fracture Toughness Properties of Steels for Reactor Pressure Vessels on the Basis of Local Approach”. In the present paper, the physical and mechanical aspects of the irradiation embrittlement phenomenon are analysed on the basis of a multi-scale approach that includes the physical mechanisms of irradiation damage, the physical mechanisms of nucleation and propagation of cleavage microcracks, formulation of a local approach criterion and calculation of fracture toughness. It has become clear from the study performed that irradiation embrittlement is not only due to the hardening of material as traditionally considered. Damage features such as irradiation-induced lattice defects, element precipitation and impurity segregation also affect cleavage microcrack nucleation, although they do not appreciably change the critical stress for microcrack propagation. It is shown that irradiation embrittlement of RPV steels is connected both with the increase of yield stress (mechanical factor) and the decrease of the critical stress for microcrack nucleation (physical factor). This finding allows an interpretation of the experimental observations, showing that for some cases there is no simple one-to-one relationship between the brittle-to-ductile transition temperature shift ΔTtr and the corresponding increase in yield stress ΔσY. For example, this explains why irradiation-induced phosphorus segregation may significantly increase the transition temperature shift ΔTtr but does not result in a significant increase in yield stress. Calculation of the KJC(T) curves has shown that the contributions of mechanical and physical factors in irradiation embrittlement may differ for various steels. So, for low-alloy, low-strength steel the mechanical factor predominates, while for RPV steels both of these factors control irradiation embrittlement. The results obtained have been interpreted with reference to a local cleavage fracture criterion.
Skip Nav Destination
ASME 2008 Pressure Vessels and Piping Conference
July 27–31, 2008
Chicago, Illinois, USA
Conference Sponsors:
- Pressure Vessels and Piping
ISBN:
978-0-7918-4829-6
PROCEEDINGS PAPER
Physical and Mechanical Aspects of Radiation Embrittlement of RPV Steels
B. Margolin,
B. Margolin
Central Research Institute of Structural Materials Prometey, Saint-Petersburg, Russia
Search for other works by this author on:
V. Shvetsova,
V. Shvetsova
Central Research Institute of Structural Materials Prometey, Saint-Petersburg, Russia
Search for other works by this author on:
A. Gulenko,
A. Gulenko
Central Research Institute of Structural Materials Prometey, Saint-Petersburg, Russia
Search for other works by this author on:
V. Nikolaev,
V. Nikolaev
Central Research Institute of Structural Materials Prometey, Saint-Petersburg, Russia
Search for other works by this author on:
D. Lidbury,
D. Lidbury
Serco Technical and Assurance Services, Warrington, Cheshire, UK
Search for other works by this author on:
E. Keim
E. Keim
Framatome ANP, Germany
Search for other works by this author on:
B. Margolin
Central Research Institute of Structural Materials Prometey, Saint-Petersburg, Russia
V. Shvetsova
Central Research Institute of Structural Materials Prometey, Saint-Petersburg, Russia
A. Gulenko
Central Research Institute of Structural Materials Prometey, Saint-Petersburg, Russia
V. Nikolaev
Central Research Institute of Structural Materials Prometey, Saint-Petersburg, Russia
D. Lidbury
Serco Technical and Assurance Services, Warrington, Cheshire, UK
E. Keim
Framatome ANP, Germany
Paper No:
PVP2008-61133, pp. 937-946; 10 pages
Published Online:
July 24, 2009
Citation
Margolin, B, Shvetsova, V, Gulenko, A, Nikolaev, V, Lidbury, D, & Keim, E. "Physical and Mechanical Aspects of Radiation Embrittlement of RPV Steels." Proceedings of the ASME 2008 Pressure Vessels and Piping Conference. Volume 6: Materials and Fabrication, Parts A and B. Chicago, Illinois, USA. July 27–31, 2008. pp. 937-946. ASME. https://doi.org/10.1115/PVP2008-61133
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
Prediction of Ductile-to-Brittle Transition Under Different Strain Rates in Undermatched Welded Joints
J. Pressure Vessel Technol (June,2011)
Analysis of Radiation-Induced Embrittlement Gradients on Fracture Characteristics of Thick-Walled Pressure Vessel Steels
J. Eng. Ind (November,1971)
Ballistic Impact of Structural Steels at Low Temperatures
J. Appl. Mech (October,2022)
Related Chapters
Estimation of K Ic from Slow Bend Precracked Charpy Specimen Strength Ratios
Developments in Fracture Mechanics Test Methods Standardization
Recent Developments in J Ic Testing
Developments in Fracture Mechanics Test Methods Standardization
In Situ Observations of the Failure Mechanisms of Hydrided Zircaloy-4
Zirconium in the Nuclear Industry: 20th International Symposium