A long-term UK research programme has been established in order to improve the understanding of thermo-mechanical behaviour and residual stresses generated in pressure vessel steel welds as well as developing finite element (FE) welding simulation methods. The production of representative test specimens is an important element of this research project, since quality measurement data are needed to validate FE models. This paper describes the design, development and manufacture of welded plate specimens used for residual stress (RS) experiments. To date, research has focused mainly on developing the understanding of SA508 pressure vessel steel welds. Specimen dimensions were selected to facilitate stress measurements using a range of techniques. The philosophy adopted was to start with relatively simple 1-pass weld specimens and gradually increase the complexity to multi-pass groove welds in plates. Simple 1-pass weld specimens were generally designed to investigate the effect of welding parameters on thermo-mechanical behaviour, such as heat-affected zone (HAZ) microstructures and phase transformations. Later specimens are more representative of multi-pass power plant welds. They are being used to study material thermal cyclic hardening/softening behaviour. Other issues of concern are also being investigated, such as the effect of restraint during welding on RS and the effectiveness of post weld heat treatment (PWHT). Specimens were also designed to study peak stresses arising at bead stop/start positions and whether such peak stresses are annealed in overlaying additional weld metal. These investigations were performed on multi-pass groove welds in both austenitic and ferritic steel plates. Practical issues encountered during welding trials are discussed, including plate distortion and magnetisation of the ferritic steel plates. Information is also provided about welding temperature measurements and metallurgical examinations.

This content is only available via PDF.
You do not currently have access to this content.