Clarification of creep damage mechanism and establishment of remaining life prediction methods of longitudinal welded piping of P91 steel are important subjects to maintain reliable operation of boilers in thermal power plants. Internal pressure creep tests were conducted on P91 steel longitudinal welded tubes to characterize the evolution of creep damage with time and to evaluate a life prediction method. Interrupted creep tests were utilized for damage observation in addition to rupture tests. Three dimensional FE creep analysis of the creep tested specimens were conducted to identify stress and creep strain distribution within the specimen during creep. Failure occurred at a heat affected zone without significant macroscopic deformation. It was found that initiation of creep voids had concentrated at mid-thickness region rather than surface. The creep analysis results indicated that triaxial tensile stress yielded at the mid-thickness region of the heat affected zone due to difference of creep deformation property between the base metal, heat affected zone and weld metal. It was suggested that the triaxial stress state caused acceleration of the creep damage evolution in the heat affected zone resulting in internal failure of the tube specimens. A rupture time prediction method of the welded tube is proposed based on the maximum principal stress and the triaxial stress factor. Void growth behavior in the heat affected zone was well predicted by the previously proposed void growth simulation method by introducing void initiation function to the method.

This content is only available via PDF.
You do not currently have access to this content.