During initial operation, one of three identical Claus furnace burners of a large Sulfur Recovery Complex was observed to develop a vibration at certain operational conditions that affected the reliability of some of the instruments attached to the burner front. The resonance was not sufficient to lead to mechanical damage of the burner or the instruments but led to spurious operational trips and corresponding plant shutdowns. The observed vibration, first considered to be a result of mechanical resonance within the burner assembly, was found to be the direct result of acoustic excitation of a burner pressure head by the natural acoustical frequencies present in the attached furnace during the combustion process. The investigation included gathering field operational conditions, field vibration measurements, and analytical computations using finite element methods. This paper reports the investigation process, results obtained, and the modifications that were determined necessary to sufficiently reduce the vibration of the instruments.

This content is only available via PDF.
You do not currently have access to this content.