To develop a fatigue design curve of cast stainless steel CF8M used in primary piping material of nuclear power plants, low-cycle fatigue tests have been conducted by Korea Electric Power Research Institute (KEPRI). A small autoclave simulated the environment of a pressurized water reactor (PWR), 15 MPa and 315 °C. Fatigue life was measured in terms of the number of cycles with the variation of strain amplitudes at 0.04%/s strain rate. A small autoclave of 1 liter and cylindrical solid fatigue specimens were used for the strain-controlled low cycle environmental fatigue tests to make the experiments convenient. However, it was difficult to install displacement measuring instruments at the target length of the specimens inside the autoclave. To mitigate the difficulty displacement data measured at the shoulders of the specimen were calibrated based on the data relation of the target and shoulder length of the specimen during hot air test conditions. KEPRI developed a test procedure to perform low cycle environmental fatigue tests in the small autoclave. The procedure corrects the cyclic strain hardening effect by performing additional tests in high temperature air condition. KEPRI verified that the corrected test result agreed well with that of finite element method analysis. The process of correcting environmental fatigue data would be useful for producing reliable fatigue curves using a small autoclave simulating the operating conditions of a PWR.

This content is only available via PDF.
You do not currently have access to this content.