The French field experience in stainless steel bi-metallic welds (BMW) has shown different degradations like external surface corrosion cracks close to the low alloy steel/stainless steel interface or fabrication defects in different other locations. In many countries, some degradation has been encountered in different type of bi-metallic welds: stainless steel BMW or Ni-based alloy BMW through different degradation mechanisms (corrosions). The critical crack size in different location of a BMW is a key safety issue. To-day, there is no flaw evaluation procedure for this type of components in existing operation codes, like ASME XI [7], RSE-M [6] or R6 rule [5]. Consequently a fracture mechanic procedures is under preparation in the French RSE-M operation Code [6] in order to evaluate the critical crack sizes of defects in different area of a bi-metallic weld. The procedure validation is based on 2 specific experimental projects that have been performed on 6" and 16" bi-metallic welds at room temperature and 300°C. Detailed residual stress measurements and simulation have been done, in order to check their influence on the critical crack size. The major results of these projects are: • no instable crack growth for cracks closed to the fusion line, • crack ductile tearing growth take place in the lower strength material and not in the lower toughness material, • the residual stresses have a negligible effect on the critical crack size, • the crack initiation take a place close to the maximum limit loads, • the ductile crack growth is mainly at the deepest point and negligible on the outer surface (for the cracks considered in these test programs), • no existing engineering methods are really available for this type of cracked components, • the crack distance to the interface is a key parameter in term of toughness, • comparison of notched and pre-crack specimen has been done and confirm a small increase of toughness in the case of electro-eroded crack. After a brief summary of the validation programs, the paper ends with a proposed procedure to analyse the critical crack size in a bi-metallic weld through two methods: an engineering method (1) with large safety factor and an elasto-plastic FEM (Finite Element Method) (2) with lower safety factors. They will be included soon in the RCC-M [8] for design consideration of BMW and the RSE-M [6] codes for service behaviour of BMW. Similar method can be used for different type of BMW (VVER, Ni-based alloy...).
Skip Nav Destination
ASME 2008 Pressure Vessels and Piping Conference
July 27–31, 2008
Chicago, Illinois, USA
Conference Sponsors:
- Pressure Vessels and Piping
ISBN:
978-0-7918-4824-1
PROCEEDINGS PAPER
Structural Integrity of Bi-Metallic Welds in Piping Fracture Testing and Analysis
Claude Faidy
Claude Faidy
Electricite´ de France-SEPTEN, Villeurbanne Cedex, France
Search for other works by this author on:
Claude Faidy
Electricite´ de France-SEPTEN, Villeurbanne Cedex, France
Paper No:
PVP2008-61912, pp. 191-200; 10 pages
Published Online:
July 24, 2009
Citation
Faidy, C. "Structural Integrity of Bi-Metallic Welds in Piping Fracture Testing and Analysis." Proceedings of the ASME 2008 Pressure Vessels and Piping Conference. Volume 1: Codes and Standards. Chicago, Illinois, USA. July 27–31, 2008. pp. 191-200. ASME. https://doi.org/10.1115/PVP2008-61912
Download citation file:
14
Views
Related Proceedings Papers
Related Articles
Technical Basis for ASME Section VIII Code Case 2235 on Ultrasonic Examination of Welds in Lieu of Radiography
J. Pressure Vessel Technol (August,2001)
A Plastic Fracture Mechanics Prediction of Fracture Instability in a Circumferentially Cracked Pipe in Bending—Part II: Experimental Verification on a Type 304 Stainless Steel Pipe
J. Pressure Vessel Technol (November,1981)
The Benefit of Hydrogen Addition to the Boiling Water Reactor Environment on Stress Corrosion Crack Initiation and Growth in Type 304 Stainless Steel
J. Eng. Mater. Technol (January,1986)
Related Chapters
Recent Developments in J Ic Testing
Developments in Fracture Mechanics Test Methods Standardization
Applications of Elastic-Plastic Fracture Mechanics in Section XI, ASME Code Evaluations
Online Companion Guide to the ASME Boiler & Pressure Vessel Codes
Section XI Flaw Acceptance Criteria and Evaluation Using Code Procedures
Online Companion Guide to the ASME Boiler & Pressure Vessel Codes