Directionally solidified superalloy, which has elongated large grains, is used for a gas-turbine blade because of its high creep strength. Since the grain size is not small enough in comparison with the size of component and crack, the inhomogeneous microstructure strongly affects the crack propagation behavior. The aim of this research is to clarify the microstructural effect in the creep-fatigue under a transverse load. The experiment reveals characteristic crack path and fluctuation of crack propagation rate in detail. Several intergranular sub-cracks initiated ahead of the tip of main crack occasionally connect with each other and form a complicated crack path. The deformation near the crack tip during a loading cycle is highly dependent on the local grain boundary network, grain shape, and crack shape. The magnitude of da/dN is correlated fairly well with that of local deformation in the vicinity of crack tip. This suggests that the stress field near the crack tip governs the crack propagation.

This content is only available via PDF.
You do not currently have access to this content.