This paper develops the transition matrix formalism for scattering from an three-dimensional alluvium on an elastic half-space. Betti’s third identity is employed to establish orthogonality conditions among basis functions that are Lamb’s singular wave functions. The total displacements and associated tractions exterior and interior to the surface are expanded in a Rayleigh series. The boundary conditions are applied and the T-matrix is derived. A linear transformation is utilized to construct a set of orthogonal basis functions. The transformed T-matrix is related to the scattering matrix and it is shown that the scattering matrix is symmetric and unitary and that the T-matrix is symmetric. Typical numerical results obtained by incident plane waves for verification are presented.

This content is only available via PDF.
You do not currently have access to this content.