A shielded cask is used to transport radioactive materials between facilities. The cask was fabricated with an outer and inner shell of hot rolled low carbon steel. Lead was poured in the annular space between the shells to provide radiation shielding. Carbon steel is known to be susceptible to low-temperature brittle fracture under impact loading. This paper will present the analysis results representing postulated transportation accidents during on-site transfers of the cask. The accident scenarios were based on a series of cask drops onto a rigid surface from a height of 6 ft assuming brittle failure of the cask shell at subzero temperatures. Finite element models of the cask and its contents were solved and post processed using ABAQUS software. Each model was examined for failure to contain radioactive materials and/or significant loss of radiation shielding. Results of these analyses show that the body of the cask exhibits considerable ruggedness and will remain largely intact after the impact. There will be deformation of the main cask body with localized brittle failure of the cask outer shell and components and but no complete penetration of the cask shielding. The cask payload outer waste can will experience some permanent plastic deformation in each drop, but will not be deformed to the point where it will rupture, thus maintaining confinement of the can contents.

This content is only available via PDF.
You do not currently have access to this content.