In September 2004, the Nuclear Regulatory Commission (NRC) issued Generic Letter GL2004-02 “Potential Impact of Debris Blockage on Emergency Recirculation during Design Basis Accidents at Pressurized-Water Reactors” to address Generic Safety Issue 191 (GSI-191) “Assessment of debris accumulation on PWR sump performance.” [1] GL2004-02 requested pressurized water reactor (PWR) licensees to perform a “downstream effects” evaluation of their emergency core cooling (ECCS) and containment spray systems (CSS). GL2004-02 also gave guidance on what analysis had to be completed in order to resolve GSI-191. These evaluations included a wear and plugging assessment of all ECCS and CSS components, including valves. During preliminary “downstream effects” analysis of a plant, it was determined that the positions of ECCS throttle valves could be such that the flow clearances through the valves would be too small to meet the criteria developed for component plugging or wear assessment. This suggested that a modification to the system needs to be made which allows the throttle valves to be more fully opened. In order to allow the throttle valves to be opened more fully, additional hydraulic resistance (i.e. pressure drop at the design flow rate) was added at another location. Several orifice designs were considered to provide the needed resistance. Since the required additional pressure drop was a substantial fraction of the total pressure drop, special design features of the orifice were necessary to preclude system instabilities due to cavitation, degassing and flow swirl. The purpose of this paper is to present a method for assessing the effectiveness of a multi-stage orifice that can be placed in the system to provide the required resistance, thus permitting the throttle valves to be used more efficiently. The paper presents the design aspects of the multi-stage breakdown orifice, CFD modeling used to select the design, and the system condition testing results.
Skip Nav Destination
ASME 2007 Pressure Vessels and Piping Conference
July 22–26, 2007
San Antonio, Texas, USA
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
0-7918-4285-1
PROCEEDINGS PAPER
An Application of Computational Fluid Dynamics (CFD) Code to the Design of a Multi-Stage Breakdown Orifice in Support of GSI-191 Evaluations
J. C. Adams,
J. C. Adams
Westinghouse Electric Company, Pittsburgh, PA
Search for other works by this author on:
L. I. Ezekoye,
L. I. Ezekoye
Westinghouse Electric Company, Pittsburgh, PA
Search for other works by this author on:
S. M. Smith,
S. M. Smith
Westinghouse Electric Company, Pittsburgh, PA
Search for other works by this author on:
S. R. Swantner
S. R. Swantner
Westinghouse Electric Company, Pittsburgh, PA
Search for other works by this author on:
J. C. Adams
Westinghouse Electric Company, Pittsburgh, PA
L. I. Ezekoye
Westinghouse Electric Company, Pittsburgh, PA
S. M. Smith
Westinghouse Electric Company, Pittsburgh, PA
S. R. Swantner
Westinghouse Electric Company, Pittsburgh, PA
Paper No:
PVP2007-26208, pp. 217-222; 6 pages
Published Online:
August 20, 2009
Citation
Adams, JC, Ezekoye, LI, Smith, SM, & Swantner, SR. "An Application of Computational Fluid Dynamics (CFD) Code to the Design of a Multi-Stage Breakdown Orifice in Support of GSI-191 Evaluations." Proceedings of the ASME 2007 Pressure Vessels and Piping Conference. Volume 7: Operations, Applications and Components. San Antonio, Texas, USA. July 22–26, 2007. pp. 217-222. ASME. https://doi.org/10.1115/PVP2007-26208
Download citation file:
4
Views
0
Citations
Related Proceedings Papers
Related Articles
Functional Information of System Components Influenced by Counteractions on Computer-Based Procedure
ASME J of Nuclear Rad Sci (October,2018)
External Hazard Coinciding With Small Break LOCA—Thermohydraulic Calculation With System Code ATHLET
ASME J of Nuclear Rad Sci (April,2020)
An Experimental Study on Head Loss of Prototypical Fibrous Debris Beds During Loss-of-Coolant Accident Conditions
ASME J of Nuclear Rad Sci (July,2016)
Related Chapters
Modeling of SAMG Operator Actions in Level 2 PSA (PSAM-0164)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Source Term Assessments in PSA Level 2 for the Outage Period (PSAM-0168)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Link between Level 2 PSA and Off-Site Emergency Preparedness (PSAM-0363)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)