In the operation of shell-and-tube heat exchangers, vibration of the tubes can be induced by fluid flowing over the tube array in cross flow. The region of concern in Steam Generators (SG) is the upper most U-bend region where the flow crosses a large number of tubes which can cause significant hydraulic resistance. This hydraulic resistance forces the flow to change direction. From a fluidelastic instability point of view, the tube bundle is excited by oblique cross flow. The purpose of this paper is to examine the instability phenomena in a rotated triangular tube bundle subjected to oblique single phase cross flow. In this present work tests are conducted in a wind tunnel on a rotated triangle tube array. Fluidelastic instability results are in agreement with what was expected. The results show that fluidelastic instability is strongly dependent on the angle of attack. The results also show that, generally, the elimination of bundle flexibility in the direction transverse to the flow, greatly affects the stability behavior of the array.

This content is only available via PDF.
You do not currently have access to this content.