During a pressurized thermal shock (PTS) event, the overlay cladding on the inner surface of reactor pressure vessel (RPV) is subjected to high tensile stress compared to base metal because of the difference in thermal expansion coefficients between cladding and base metal. To calculate a stress intensity factor for a postulated crack considering the stress discontinuity with the plastic yielding of cladding, the scheme developed previously has been incorporated into the PASCAL code for the structural integrity analysis. Using the new scheme, conditional probabilities of crack initiation (PCI) were calculated for a typical RPV with a surface crack or under-clad crack under some PTS transients. The PCI values were quantitatively evaluated as a function of neutron fluence using the PASCAL code. It is concluded that the new scheme reduces significantly the PCI value for a surface crack as compared with the conventional method based on elastic stress analysis.

This content is only available via PDF.
You do not currently have access to this content.