Thermal hot spots and corrosion damage are typical of damages occurring in pressure vessels and piping. Structural integrity of such components needs to be evaluated periodically to determine “fitness-for-service” of the components. In the present paper, three alternative methods for Level 2 FFS assessments (as defined by API 579) are proposed. They are based on variational principles in plasticity, the limit load multiplier m-alpha method, reference volume and the concept of decay lengths in shells. Decay lengths in the axial and circumferential directions for cylindrical shells are derived based on elastic shell theories. They are used to specify the reference volume participating in plastic action and the limit of what can be called “local” damage. Interaction between longitudinal and circumferential effects is investigated. A linear interaction curve is shown to give good estimations of “remaining strength factor” for damages of practical aspect ratios. The stretching and bulging effects due to the damage are also studied. The limit defining the threshold to dominance of stretching action is proposed by using an approximate equilibrium calculation based on yield-line analysis. The effectiveness of the proposed assessments are demonstrated through an example and verified by Level 3 inelastic finite element analysis.

This content is only available via PDF.
You do not currently have access to this content.