Many utilities select critical welds in their main steam (MS) and hot reheat (HRH) piping systems by considering some combination of design-based stresses, terminal point locations, and fitting weldments. The conventional methodology results in frequent inspections of many low risk areas and the neglect of some high risk areas. This paper discusses the use of a risk-based inspection (RBI) strategy to select the most critical inspection locations, determine appropriate reexamination intervals, and recommend the most important corrective actions for the piping systems. The high energy piping life consumption (HEPLC) strategy applies cost effective RBI principles to enhance inspection programs for MS and HRH piping systems. Using a top-down methodology, this strategy is customized to each piping system, considering applicable effects, such as expected damage mechanisms, previous inspection history, operating history, measured weldment wall thicknesses, observed support anomalies, and actual piping thermal displacements. This information can be used to provide more realistic estimates of actual time-dependent multiaxial stresses. Finally, the life consumption estimates are based on realistic weldment performance factors. Risk is defined as the product of probability and consequence. The HEPLC strategy considers a more quantitative probability assessment methodology as compared to most RBI approaches. Piping stress and life consumption evaluations, considering existing field conditions and inspection results, are enhanced to reduce the uncertainty in the quantitative probability of failure value for each particular location and to determine a more accurate estimate for future inspection intervals. Based on the results of many HEPLC projects, the author has determined that most of the risk (regarding failure of the pressure boundary) in MS and HRH piping systems is associated with a few high priority areas that should be examined at appropriate intervals. The author has performed many studies using RBI principles for MS and HRH piping systems over the past 15 years. This life management strategy for MS and HRH critical welds is a rational approach to determine critical weldment locations for examinations and to determine appropriate reexamination intervals as a risk-based evaluation technique. Both consequence of failure (COF) and likelihood of failure (LOF) are considered in this methodology. This paper also provides a few examples of the application of this methodology to MS and HRH piping systems.
Skip Nav Destination
ASME 2007 Pressure Vessels and Piping Conference
July 22–26, 2007
San Antonio, Texas, USA
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
0-7918-4279-7
PROCEEDINGS PAPER
Risk-Based Inspection Applied to Main Steam and Hot Reheat Piping Systems
Marvin J. Cohn
Marvin J. Cohn
Aptech Engineering Services Inc., Sunnyvale, CA
Search for other works by this author on:
Marvin J. Cohn
Aptech Engineering Services Inc., Sunnyvale, CA
Paper No:
PVP2007-26375, pp. 457-471; 15 pages
Published Online:
August 20, 2009
Citation
Cohn, MJ. "Risk-Based Inspection Applied to Main Steam and Hot Reheat Piping Systems." Proceedings of the ASME 2007 Pressure Vessels and Piping Conference. Volume 1: Codes and Standards. San Antonio, Texas, USA. July 22–26, 2007. pp. 457-471. ASME. https://doi.org/10.1115/PVP2007-26375
Download citation file:
9
Views
Related Proceedings Papers
Life Management of Main Steam and Hot Reheat Piping Systems: Part 2
PVP2006-ICPVT-11
Life Management of Main Steam and Hot Reheat Piping Systems: Part 1
PVP2006-ICPVT-11
Related Articles
A Recent Review of Risk-Based Inspection Development to Support Service Excellence in the Oil and Gas Industry: An Artificial Intelligence Perspective
ASME J. Risk Uncertainty Part B (March,2023)
Risk-Based Inspection Analysis for High-Pressure Hydrogenation Cracking Unit
J. Pressure Vessel Technol (April,2009)
Life Assessment of Hot Reheat Steam Pipe
J. Pressure Vessel Technol (February,1990)
Related Chapters
Use of PSA in Lisencing of EPR 1600 in Finland (PSAM-0160)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
PSA Level 2 — NPP Ringhals 2 (PSAM-0156)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Introduction
Fluid Mechanics, Water Hammer, Dynamic Stresses, and Piping Design