Direct measurement of the dynamic lift force for the case of two tandem cylinders in cross-flow during acoustic resonance is performed. Two spacing ratios inside the proximity interference region, L/D = 2.5 and 3, are considered. During the tests, the acoustic transverse-modes of the duct housing the cylinder are self-excited. In the absence of acoustic resonance, the measured dynamic lift coefficient agrees well with those reported in the literature. When the acoustic resonance is initiated, a drastic increase in the dynamic lift coefficient is observed, especially on the downstream cylinder. This is associated with abrupt changes in the phase between the lift forces and the acoustic pressure. The dynamic lift forces on both cylinders are also decomposed into in-phase and out-of-phase components, with respect to the resonant sound pressure. The lift force components for the downstream cylinder are found to be dominant. Moreover, the out-of-phase component of the lift force on the downstream cylinder is found to become negative over two different ranges of flow velocity and to virtually vanish between these two ranges. Acoustic resonance is therefore generated over two ranges of reduced velocity separated by a non-resonant range near the velocity of frequency coincidence. The out-of-phase lift component of the downstream cylinder is found to control the occurrence of acoustic resonance, whereas the in-phase lift component seems to cause slight variations in the acoustic resonance frequency.

This content is only available via PDF.
You do not currently have access to this content.