This study investigates the temperature distribution in an idealized cylindrical package subjected to the HAC Fire transient. Cases for several common overpack materials, with thermal conductivity spanning two orders of magnitude, are considered. The results show that the interior temperature distribution and maximum interior temperature are determined by the heat generation of the contents and the thermal resistance of the package materials. Heat generation has a dominant effect on the peak temperature in the center (containment vessel region) of the package, when the internal thermal resistance is high. For cases where the internal resistance is low, heat conducted into the interior during the fire determines the peak temperature in the center, containment vessel region. The thermal wave effect, where the interior temperature continues to rise after the end of the fire exposure, is present in all cases. The study complements the parametric studies of effects of thermal properties on thermal response of packages which were previously reported.

This content is only available via PDF.
You do not currently have access to this content.