Boric acid attack in the reactor pressure vessel (RPV) head of the Davis-Besse (D-B) nuclear plant led to wastage through the 150-mm low alloy steel head such that the stainless steel cladding was exposed. The Heavy-Section Steel Technology (HSST) Program at Oak Ridge National Laboratory was commissioned by the Nuclear Regulatory Commission to conduct a program of testing and analysis to enable an evaluation of the structural significance of cladding defects found in the wastage cavity of the D-B head. The overall test program consisted of material characterization at 316°C (600°F) of cladding materials, pressure vessel burst tests of cladding discs with and without flaws, and extensive analytical studies. Three different cladding materials were tested and evaluated, one from an unused commercial RPV that was used for the clad-burst experiments, an archival cladding previously used for various experimental and irradiation experiments, and the cladding from the D-B head. This paper compares and discusses the fracture toughness test results conducted with the three claddings, and the fractographic analyses conducted on the clad-burst discs. Comparison of J-resistance curves for the three clad materials shows significant material variability and disparity in the results from two test specimen types. Fractographic examinations of clad-burst discs showed transition from ductile tearing to shear mode of fracture. The relationship of the cladding test results with the clad-burst results is discussed.

This content is only available via PDF.
You do not currently have access to this content.