To reduce tensile residual stress in a welded region, we have developed a new cooling method that applies a water-shower behind the welding torch. When this method is applied to multi-layer welding of austenitic stainless steel plates, cooling conditions mainly determine how much the residual stress can be reduced. To determine the conditions, we first used FEM to evaluate the effects of water-shower cooling and interpass temperature on the residual stress. In addition, we found effective conditions for reducing tensile residual stress. To verify the validity of the conditions, three plates were welded with or without water shower cooling. Residual stresses of the plates were measured experimentally. It was found that tensile residual stresses occurred on the surface of the welds and that they were reduced when the water-shower was applied at the last pass. These measurement results agree well with the FEM analyses. It can therefore be concluded that water-shower cooling during the last welding pass is appropriate for reducing tensile residual stress in austenitic stainless steel at a multi-pass weld.

This content is only available via PDF.
You do not currently have access to this content.