Linear elastic fracture mechanics of cracks is well established, and is based on the stress field near a crack tip being described by the stress intensity factor, with crack extension occurring when the stress intensity factor is equal to a critical value, which is referred to as the fracture toughness of the material. This methodology has been applied to a wide range of materials and structures, with the fracture toughness being related to the micro-mechanistic fracture processes, often via the cohesive-process zone representation of these fracture processes. The author is involved in a wide-ranging research programme whose objective is to extend the fracture mechanics methodology to blunt flaws, so as to take credit for the blunt flaw geometry, the strategy being to parallel, as far as possible, the methods that have been developed for cracks. Earlier work has shown that an appropriate characterizing parameter, analogous to the stress intensity factor for a crack, is the elastic peak flaw tip stress, with fracture initiating when the peak stress attains a critical value, which is related to the flaw geometry, in particular the flaw root radius, and material parameters. A simple expression has been derived for the critical peak stress and, in this paper, we provide support for its robustness.
Skip Nav Destination
ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
July 23–27, 2006
Vancouver, BC, Canada
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
0-7918-4757-8
PROCEEDINGS PAPER
The Robustness of a Simple Expression for Quantifying Fracture Initiation at a Blunt Flaw
E. Smith
E. Smith
University of Manchester, Manchester, UK
Search for other works by this author on:
E. Smith
University of Manchester, Manchester, UK
Paper No:
PVP2006-ICPVT-11-93056, pp. 23-28; 6 pages
Published Online:
July 23, 2008
Citation
Smith, E. "The Robustness of a Simple Expression for Quantifying Fracture Initiation at a Blunt Flaw." Proceedings of the ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. Volume 6: Materials and Fabrication. Vancouver, BC, Canada. July 23–27, 2006. pp. 23-28. ASME. https://doi.org/10.1115/PVP2006-ICPVT-11-93056
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Erratum: “Plane-Strain Propagation of a Fluid-Driven Fracture: Small Toughness Solution” [ Journal of Applied Mechanics, 2005, 72(6), pp. 916–928 ]
J. Appl. Mech (July,2007)
Dynamic Steady-State Stress Field in a Web During Slitting
J. Appl. Mech (March,2005)
Delamination Risk Evaluation for Plastic Packages Based on Mixed Mode Fracture Mechanics Approaches
J. Electron. Packag (December,2002)
Related Chapters
Applications of Elastic-Plastic Fracture Mechanics in Section XI, ASME Code Evaluations
Online Companion Guide to the ASME Boiler & Pressure Vessel Codes
Section XI Flaw Acceptance Criteria and Evaluation Using Code Procedures
Online Companion Guide to the ASME Boiler & Pressure Vessel Codes
Measurement of Crack Growth Resistance of A533B Wide Plate Tests
Fracture Mechanics