In piping design hydraulic load cases and the resulting dynamic structural loads are induced and generated by strongly time dependent pressure surges and subsequent oscillations. Therefore, with liquid filled piping, the implementation of fluid-structure interaction by coupling the fluiddynamic and the structural dynamic codes gives a substantial contribution to more realistic loading results. Considering this effect, usually a load reduction due to energy losses and the phase and frequency shift from fluid to structure and vice versa is achieved. In cases of fluid structure resonance the results are more reliable and can help to develop an optimized support concept. To realize the coupled calculation of both codes they are bundled by a special user environment, where the coupling points are specified and marked. We describe the input of fluid forces at those points and the treatment of the liquid masses inside the piping, as well as the method of back-coupling the resulting structural displacements into the fluid calculation. The method was validated against measurements of load cases in power plant piping systems and experimental results for various boundary conditions. The most realistic results were obtained by combining the coupling with the application of dynamic friction in the fluid code.

This content is only available via PDF.
You do not currently have access to this content.