An experimental program was conducted by the Heavy-Section Steel Technology Program at the Oak Ridge National Laboratory (ORNL) to evaluate the structural significance of defects found in the unbacked cladding of the Davis-Besse vessel head. ORNL conducted total 13 clad burst tests with unflawed/flawed specimens. Failure pressure data from those tests indicated a high degree of repeatability for the tests performed in the clad burst program. Unflawed clad burst specimens failed around the full perimeter of the disk from plastic instability; an analytical model for plastic collapse was shown to adequately predict those results. The flawed specimens tested in the program failed by ductile tearing of the notch defect through the clad layer. Analytical interpretations that utilized 3-D finite element models of the clad burst specimens were performed for all tests. Fractographic studies were performed on failed defects in the flawed burst specimens to verify the ductile mode of failure. Comparisons of computed results from 3-D finite element models with measured gage displacement data (i.e., center-point deflection and CMOD) indicated reasonably good agreement up to the region of instability. For tests instrumented with the CMOD gage, good agreement between calculated and measured CMOD data up to the onset of instability implies that ductile tearing initiated near the maximum load and (with a small increase in load) rapidly progressed through the clad layer to produce failure of the specimen.

This content is only available via PDF.
You do not currently have access to this content.