Low cycle fatigue life of carbon and low alloy steels reduces remarkably as functions of strain rate, temperature, dissolved oxygen and sulfur in steel in high temperature water simulating LWR coolant. A model for predicting such fatigue life reduction was first proposed in the early 1980s and since then has been revised several times. The existing model established in 2000 is used for the MITI Guideline [6] and the TENPES Guideline [7] which stipulate procedures for evaluating environmental fatigue damage at LWR plants in Japan. This paper presents the most recent environmental fatigue evaluation model derived based on additional fatigue data provided by the EFT Project over the past five years. This model differs not significantly with previous version but does provide more accurate equations for the susceptibility of fatigue life to sulfur in steel, strain rate, temperature and dissolved oxygen. Test data on environmental fatigue of nickel base alloys are available only to a limited extent and there is yet no model for predicting fatigue life reduction in such an environment. The EFT Project has made available considerable environmental fatigue test data and developed a new model for calculating Fen of nickel base alloys. The contribution of environment to fatigue of nickel base alloy is much less compared to that in austenitic stainless steel.

This content is only available via PDF.
You do not currently have access to this content.