Spent nuclear fuel is currently being stored at nuclear reactor sites. The spent fuel removed from the reactor is first placed in a large water pool to remove the initial decay heat. After several years, when the decay heat has dropped below a set level, the fuel is moved into concrete storage casks where natural circulation continues the cooling process. The purpose of this report is to predict, using a simplified analysis, how hot the fuel rods get when cooled by air in the cask. The increase in temperature and the decrease in density cause a chimney effect in the cask. This paper presents an analytical method of obtaining maximum fuel clad temperature in the cask. A non-dimensional model is derived, which is used to calculate the entrance and exit air velocities of the cask. The relationship between these velocities and the temperature used to obtain the maximum fuel clad temperature. A numerical scheme used to predict the maximum temperature is presented here and the results are compared to the analytical model. Both methods yielded corroborating results for fuel placed in the casks after spending similar amounts of time in a spent fuel pool.

This content is only available via PDF.
You do not currently have access to this content.