To understand the fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. The distributions of flow parameters across a pipe, such as gas velocity, liquid velocity and void fraction, may be assumed to follow a power law (Cheng 1998, Serizawa et al. 1975). The void fraction profile is, for example, uniform for bubbly flow while it is more or less parabolic for slug flow. In the present work, the average values of momentum flux, slip ratio, etc. are derived by integral analysis, based on approximate power law distributions. A parametric study with various distributions was performed. The existing empirical formulations for average void fraction, proposed by Wallis (1969), Zuber et al. (1967) and Ishii (1970), are considered to obtain the present results. In particular, the unsteady momentum flux for slug flow is approximated.

This content is only available via PDF.
You do not currently have access to this content.