There are many methods on computation of transverse elastic properties of unidirectional fiber-reinforced composites when using the finite element method, such as three-dimension model, two-dimension plane strain model, unit cell model, etc[1]. But unit cell models could be used only when the fibers are arrayed regularly. The computations of three- and two-dimension plane strain models are tremendous when many fine fibers are spread randomly in the matrix so that the properties of block of composite must be computed. The paper proposes a new embedded-zone method to compute the transverse elastic properties for a block of fiber-reinforced composites containing a great amount of fibers embedded in the matrix stochastically while using very little computational work compared with three- and two-dimension plane strain model. The transverse elastic modulus and shear modulus of unidirectional fiber-reinforced composites are computed.

This content is only available via PDF.
You do not currently have access to this content.