The objective of this paper is to reduce the stresses and deflection of an existing slab tank [2]. The slab tank is to store various criticality liquids used in today’s industry. The preliminary overall dimensions of the slab tank are determined from the capacity of the stored liquids. The slab tank design is broken up into (a) two long side members, (b) two short side members, (c) top head, and (d) bottom head. The slab tank is supported from the bottom at a height by a rectangular plate enclosure. The deflection of the linear space is a critical requirement. The deflection is controlled by providing external supports from the bottom at a height by adjustable bolts. The analysis of the slab tank showed excessive stresses at the concentrated supports. The slab tank was modified by providing reinforcement on the long side members. Several reinforcement arrangements were considered. The slab tank is subjected to two conditions. First, vacuum condition, the long side plates will deflect inwards. Second, internal pressure condition the design pressure consists of working internal pressure plus static head pressure. For this the long side plates will deflect outwards. The heads are designed for internal pressure at the bottom where the pressure is the maximum. The vacuum pressure is not critical. The dimensioned slab tank is modeled using STAAD III finite element software. The slab tank showed excessive stresses. The concentrated supports were removed. The long side member was reinforced by a Channel section. The slab tank analysis was simplified by modeling a single long side member and three cases of Channel section reinforcement were considered. The reinforced arrangement was analyzed by STAAD III finite element software. Further analysis by changing the Channel section by plate reinforcement was found to be better.

This content is only available via PDF.
You do not currently have access to this content.