In Japan, a number of three-dimensional base isolation systems have been studied for application to new nuclear plant concepts such as the FBR, but these efforts have not so far yielded practically applicable results. The impeding factor has been the difficulty of obtaining an adequate capacity on the vertical isolator for supporting the mass of an actual structure and for suppressing rocking motion. In this paper, we propose a new three-dimensional isolation system that should solve the foregoing problem. The system is constituted of a set of hydraulic load-carrying cylinders connected to accumulator units containing compressed gas, a set of rocking-suppression cylinders connected in series, and a laminated rubber bearing laid under each load-carrying cylinder. The present paper covers a basic examination for applying the proposed system to a FBR plant now under development in Japan. In order to verify expected system performance, the load-carrying cylinders were first tested independently of rocking-suppression cylinders, and this was followed by integrated dynamic test of the system incorporating both load-carrying and rocking suppression cylinders. Response analysis reflecting the test results has indicated the proposed system to be well applicable to the envisaged commercialized FBR. The study was undertaken as part of a research and development project sponsored by the government for realizing a three-dimensional seismic isolation system applicable to future FBR.

This content is only available via PDF.
You do not currently have access to this content.