Results from thermal-structural finite element analysis (FEA) were used to predict cycles to crack initiation in thermal fatigue tests of stainless steel pipes. The pipes were fatigued by alternately pumping hot and cold low oxygen water every four minutes through 304 stainless steel pipes. The rapid change in water temperature imparted a thermal shock to the inner wall of the pipe. The pipes were stepped to four different thicknesses to give four different values of thermal shock stress depending on thickness. The pipes were pressurized to 17.2 MPa (2500 psi) and the temperature cycled between 38°C (100°F) and 343°C (650°F) in three seconds. This was followed by holding at 343°C for 237 seconds and then quenching to 38°C in three seconds followed by another 237 second hold period. Thermal cycling continued until significant cracking was detected on the inside surface of the pipes. Measurements of fatigue striation spacing on the fracture surfaces allowed determination of cycles to the initiation of defects 0.254 mm (0.01 inch) deep. Alternating stresses and strains were calculated using both elastic and elastic-plastic finite element analyses (FEA). The analysis results were used with a best-fit fatigue curve to predict cycles-to-crack initiation for comparison to the experimental data. Using elastic analysis corrected for stresses beyond yield in accordance with the ASME B&VP Code and the best-fit fatigue curve adjusted for low oxygen water environments resulted in under-estimates of the observed cycles to crack initiation from the tests. Improved predictions of cycles to crack initiation are possible by using an elastic-plastic FEA method with a kinematic hardening model along with the best-fit fatigue curve.
Skip Nav Destination
ASME/JSME 2004 Pressure Vessels and Piping Conference
July 25–29, 2004
San Diego, California, USA
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
0-7918-4677-6
PROCEEDINGS PAPER
Analysis of a Thermal Fatigue Test of a Stepped Pipe
D. P. Jones,
D. P. Jones
Bechtel Bettis, Inc., West Mifflin, PA
Search for other works by this author on:
J. E. Holliday,
J. E. Holliday
Bechtel Bettis, Inc., West Mifflin, PA
Search for other works by this author on:
T. R. Leax,
T. R. Leax
Bechtel Bettis, Inc., West Mifflin, PA
Search for other works by this author on:
J. L. Gordon
J. L. Gordon
Bechtel Bettis, Inc., West Mifflin, PA
Search for other works by this author on:
D. P. Jones
Bechtel Bettis, Inc., West Mifflin, PA
J. E. Holliday
Bechtel Bettis, Inc., West Mifflin, PA
T. R. Leax
Bechtel Bettis, Inc., West Mifflin, PA
J. L. Gordon
Bechtel Bettis, Inc., West Mifflin, PA
Paper No:
PVP2004-2748, pp. 67-77; 11 pages
Published Online:
August 12, 2008
Citation
Jones, DP, Holliday, JE, Leax, TR, & Gordon, JL. "Analysis of a Thermal Fatigue Test of a Stepped Pipe." Proceedings of the ASME/JSME 2004 Pressure Vessels and Piping Conference. Computer Technology and Applications. San Diego, California, USA. July 25–29, 2004. pp. 67-77. ASME. https://doi.org/10.1115/PVP2004-2748
Download citation file:
71
Views
Related Proceedings Papers
Related Articles
Low Cycle Fatigue of Nuclear Pipe Components
J. Pressure Vessel Technol (August,1974)
An Application of Incremental Plasticity Theory to Fatigue Life Prediction of Steels
J. Eng. Mater. Technol (October,1991)
A Cyclic-Plasticity-Based Mechanistic Approach for Fatigue Evaluation of 316 Stainless Steel Under Arbitrary Loading
J. Pressure Vessel Technol (February,2018)
Related Chapters
Understanding the Problem
Design and Application of the Worm Gear
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design
The Effects of Oxygen Impurities on Fretting Fatigue of Austenitic Stainless Steel in Hydrogen Gas
International Hydrogen Conference (IHC 2016): Materials Performance in Hydrogen Environments