The response of buildings to a pressure pulse from a shock wave is becoming more critical to design assessments. The severe loading transients resulting from such events, provides unique challenges to analytical modelling and simulation of building survivability. In this paper, a nonlinear explicit three dimensional blast simulation of a building is undertaken with critical contents located in the most susceptible locations in order to provide an assessment of potential damage and the impact on the contents of interest. In the work described in this paper, the source and orientation of the blast relative to the building are outlined. Using developed blast procedures, the amplitude and impulse of the blast shock wave due to specified blast parameters are determined for the front, sides, roof and rear of the building. These are applied to finite element models of the building. A state-of-the-art, large deformation, non-linear finite element code that is well suited to this class of problem, is used in the blast simulations. The results indicate that the building is severely damaged, however, the internal building area, in the vicinity of the critical contents, is intact and the main roof trusses remain attached.

This content is only available via PDF.
You do not currently have access to this content.