The paper describes the development of an efficient and robust numerical algorithm for a damage-coupled visco-plastic-fatigue material model. The material chosen for the investigation is a eutectic material, Sn-Pb solder, exhibiting strain-softening behavior. The numerical algorithms employs a modified explicit method with adaptive sub-stepping based on the local error control for which the stress (constitutive) Jacobian explicit solution is derived. The algorithm is implemented in a commercial finite element (FE) code ABAQUS (Version 6.2) via its user-defined material subroutine. The validity of the algorithm is examined with several numerical examples, including (i) single-element simulations for uniaxial test, tensile creep, and fatigue simulations to attain an optimized algorithm, and (ii) two three-dimensional analyses of a miniature specimen under monotonic tensile loading and fatigue loading. The numerical examples illustrate the effectiveness of the modified explicit algorithm in predicting cyclic thermoviscoplastic behavior of a solder material. The algorithm is considered a generalized methodology that can be readily applied characterize thermoviscoplastic behavior and fatigue life of similar materials.

This content is only available via PDF.
You do not currently have access to this content.