This paper introduces a maintenance decision-making strategy in the general area of replacement and reliability of mechanical components. The decision-making strategy involves the optimization of replacement interval based on fatigue failure of mechanical components. This new approach is based on the cumulative damage distribution function for evaluating mean fatigue life. By using the approach, the analytical expressions for the mean and the variance of the cumulative damage distribution under both stationary narrow-band and stationary wide-band random process are provided. The mean value and variance of the fatigue life distribution are thus evaluated to determine the optimal replacement intervals under fatigue failure. An algorithm of evaluating the mean and standard deviation of fatigue life is also presented. Therefore, the reliability of a component under random cyclic loading for a specified duration is quantified accordingly. Even though the new method introduces a great deal of complexity in the analytical models, this method can efficiently determine replacement intervals for component whose operating costs increases with use and replacement intervals for component subject to failure induced by the random process. An example is presented to demonstrate the application of the present method.

This content is only available via PDF.
You do not currently have access to this content.