The design margin on certain unfired pressure vessels has recently been reduced from 4.5 to 4.0 to 3.5. This has resulted in the manufacture of propane and LPG tanks with thinner walls. For example, some 500 gallon ASME code propane tanks have had the wall thickness reduced from 7.7 mm in 2001 to 7.1 mm in 2002 and now to 6.5 mm in 2004. This change significantly affects the fire survivability of these tanks. This paper presents both experimental and computational results that show the effect of this design change on tank fire survivability to fire impingement. The results show that for the same pressure relief valve setting, the thinner wall tanks are more likely to fail in a given fire situation. In severe fires, the thinner walled tanks will fail earlier. An earlier failure usually means the tank will fail with a higher fill level, because the pressure relief system has had less time to vent material from the tank. A higher liquid fill level at failure also means more energy is in the tank and this means the failure will be more violent. The worst failure scenario is known as a boiling liquid expanding vapour explosion (BLEVE) and this mode of failure is also more likely with the thinner walled tanks. The results of this work suggest that certain applications of pressure vessels such as propane transport and storage may require higher design margins than required by the ASME.

This content is only available via PDF.
You do not currently have access to this content.