Within the European Network NESC, the project NESC IV deals with constraint effects of cracks in large scale beam specimens, loaded by uni- or biaxial bending moments and containing surface or embedded cracks. The specimens are fabricated from original US RPV material, being cladded or cladding is removed. All large scale tests have been conducted at ORNL outside the NESC IV project. The outcome and the analyses of these uncladded and cladded beams containing the surface or embedded cracks are shown. By means of the finite element method, local approach methods and the Weibull stress models the specimens are analysed at the test temperatures and the probability of failure is calculated, taking into account constraint effects. For the case of the embedded cracks it turned out that the failure moment of the uncladded beam is 5% lower than the one of the cladded beam. Both crack fronts of the embedded crack are supposed to fail at the same failure moment. The results of the analysis of the cladded beam showed that the upper crack front nearer to the surface fails prior to the lower crack front, which is located deeper in the specimen (the failure moment is 5% lower). The numerical results agree very well with the experiments. The experimental failure moments could be well predicted and the failure scenario (which crack front fails first) could be determined. A theoretical shift in the transition temperature T0 due to constraint effects could be defined for both crack fronts.

This content is only available via PDF.
You do not currently have access to this content.