Delayed Hydride Cracking (DHC) in Zr-2.5 Nb alloy material is of interest to the CANDU (Canada Deuterium Uranium) industry in the context of the potential to initiate DHC at a blunt flaw in a CANDU reactor pressure tube. The material is susceptible to DHC when there is diffusion of hydrogen atoms to the flaw, precipitation of hydride platelets, and development of a hydrided region at the flaw tip. The hydrided region can then fracture to the extent that a crack forms, and is able to grow by the DHC crack growth mechanism. An engineering process-zone model for evaluation of DHC initiation at a blunt flaw that takes into account flaw geometry has been developed. The model is based on representing the stress relaxation due to hydride formation, and crack initiation, by an infinitesimally thin process zone. Application of the engineering process-zone model requires calculation of the stress intensity factor, and the crack-mouth opening displacement, for a fictitious crack at the tip of a blunt flaw. In the current model, calculation of these quantities is based on a cubic polynomial fit to represent the stress distribution ahead of the blunt flaw tip, where the stress distribution is generally calculated by finite element analysis. However, the cubic polynomial is not always an optimum fit to the stress distribution for very small root radius flaws, due to the large stress gradients near the flaw tip. Application of the weight function method will enable a more accurate representation of the flaw-tip stress distribution for the calculation of the stress intensity factor and the crack-mouth opening displacement. Weight functions for a crack at the tip of a blunt flaw in a thin wall cylinder have been developed for implementation into the engineering process-zone model. These weight functions are applicable to a wide range of blunt flaw depths and root radii, as well as a wide range of flaw-tip crack depths. The development and verification of the weight functions is described in this paper. The verification calculations are in reasonable agreement with alternate solutions, and have confirmed that the weight functions have reasonable accuracy for engineering applications of the process-zone methodology.

This content is only available via PDF.
You do not currently have access to this content.