Magnetic couplings (Figure 1) are widely used to torque transmission between two shafts without any mechanical contact. They are especially well suited for used in hazardous environments, to transmit torque through a separation wall. An additional advantage of a magnetic coupling is that slipping occurs when excessive torque is applied, this can be used to prevent mechanical failure due to torque overloads. This paper deals with influence of temperature on behavior of magnetic coupling and magnetic coupling design optimization. The permanent magnets that are used for torque transmission cannot be used close to Currie point, which is a point of loss of magnetic characteristics. We intend to use the magnetic coupling for pump of radioactive liquid materials for transmutation devices, where the temperature is close to four hundred centigrade. Because of we suggest the design changes for elimination of temperature influence. This paper presents the finite element (FE) parametric model of magnetic coupling, experimental verification of FE model and optimization of the inner part of magnetic coupling in order to increase the maximal torque. The genetic algorithm method in connection with FEM model of magnetic coupling was used for the design optimization procedure.

This content is only available via PDF.
You do not currently have access to this content.