A stress corrosion cracking (SCC) model has been adapted for performance prediction of high level radioactive-waste packages to be emplaced in the proposed Yucca Mountain radioactive-waste repository. SCC is one form of environmentally assisted cracking resulting from the presence of three factors: metallurgical susceptibility, critical environment, and tensile stresses. For waste packages of the proposed Yucca Mountain repository, the outer barrier material is the highly corrosion-resistant Alloy UNS-N06022, the environment is represented by the water film present on the surface of the waste package from dripping or deliquescence of soluble salts present in any surface deposits, and the stress is principally the weld induced residual stress. SCC has historically been separated into “initiation” and “propagation” phases. Initiation of SCC will not occur on a smooth surface if the surface stress is below a threshold value defined as the threshold stress. Cracks can also initiate at and propagate from flaws (or defects) resulting from manufacturing processes (such as welding). To account for crack propagation, the slip dissolution/film rupture (SDFR) model is adopted to provide mathematical formulas for prediction of the crack growth rate. Once the crack growth rate at an initiated SCC is determined, the time to through-wall penetration for the waste package can be calculated. The SDFR model relates the advance (or propagation) of cracks, subsequent to the crack initiation from bare metal surface, to the metal oxidation transients that occur when the protective film at the crack tip is continually ruptured and repassivated. There exists a threshold stress intensity factor, which provides a criterion for determining if an initiated crack or pre-existing manufacturing flaw arrest. This paper presents the research results that quantify the threshold stress, threshold stress intensity factor, and the parameters in the crack growth rate equation based on experimental results developed specifically for Alloy UNS-N06022 in environments relevant to high level radioactive-waste packages of the proposed Yucca Mountain radioactive-waste repository. Stress mitigation by the laser peening technique is also discussed.
Skip Nav Destination
ASME 2003 Pressure Vessels and Piping Conference
July 20–24, 2003
Cleveland, Ohio, USA
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
0-7918-4158-8
PROCEEDINGS PAPER
Modeling of Stress Corrosion Cracking for High Level Radioactive-Waste Packages
S. C. Lu,
S. C. Lu
Lawrence Livermore National Laboratory, Livermore, CA
Search for other works by this author on:
P. L. Andresen,
P. L. Andresen
GE Global Research, Schenectady, NY
Search for other works by this author on:
M. L. Herrera
M. L. Herrera
Structural Integrity Associates, San Jose, CA
Search for other works by this author on:
S. C. Lu
Lawrence Livermore National Laboratory, Livermore, CA
G. M. Gordon
Framatome ANP, Las Vegas, NV
P. L. Andresen
GE Global Research, Schenectady, NY
M. L. Herrera
Structural Integrity Associates, San Jose, CA
Paper No:
PVP2003-2139, pp. 119-127; 9 pages
Published Online:
August 13, 2008
Citation
Lu, SC, Gordon, GM, Andresen, PL, & Herrera, ML. "Modeling of Stress Corrosion Cracking for High Level Radioactive-Waste Packages." Proceedings of the ASME 2003 Pressure Vessels and Piping Conference. Transportation, Storage, and Disposal of Radioactive Materials. Cleveland, Ohio, USA. July 20–24, 2003. pp. 119-127. ASME. https://doi.org/10.1115/PVP2003-2139
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Experimental Study on Crack Growth Behavior for Austenitic Stainless Steel in High Temperature Pure Water
J. Pressure Vessel Technol (May,1986)
Status of Research on Environmentally Assisted Cracking in LWR Pressure Vessel Steels
J. Pressure Vessel Technol (May,1988)
Quantitative Evaluation of Environmentally Assisted Cracking: A Survey of Developments and Application of Modeling Concepts
J. Pressure Vessel Technol (February,1991)
Related Chapters
Introductory Information
The Stress Analysis of Cracks Handbook, Third Edition
Recent Developments in J Ic Testing
Developments in Fracture Mechanics Test Methods Standardization
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies