During a high velocity impact of a structure on an incompressible fluid, impulse loads with high pressure peaks occur. This physical phenomenon called ‘slamming’ is a concern in the shipbuilding industry because of the possibility of hull damage. Shipbuilding companies are carrying out several studies on the slamming modeling using FEM software. This paper presents the prediction of the local high pressure load on a wedge striking a free surface. The fluid-structure interaction is simulated by a fluid-structure coupling algorithm. This method of coupling, which makes it possible to transmit the efforts in pressure from the Eulerian grid to the Lagrangian grid and vice versa, is a relatively recent algorithmic development. It was successfully used in many scientific and industrial applications: the modeling of the bird strike on the fuselage of a Jet for the Boeing Corporation, underwater explosion shaking the oil platforms, and airbag simulation in automotive industry... Predicting the local pressure peak on the structure requires an accurate fluid-structure interaction algorithm. Thus, some penalty coupling enhancements make the slamming modeling possible. The main improvement is a numerical damping factor which permits to smoothing of the pressure signal.

This content is only available via PDF.
You do not currently have access to this content.