Finite element analysis is widely used to model the stresses resulting from penetrations in pressure vessels to accommodate components such as nozzles and man-ways. In many cases a reinforcing pad is required around the nozzle or other component to meet the design requirements of Section VIII, Division 1 or 2, of the ASME Pressure Vessel Code [1]. Several different finite element techniques are currently used for calculating the effects of reinforcing pads on the shell stresses resulting from penetrations for nozzles or man-ways. In this research the stresses near a typical reinforced nozzle on a pressure vessel shell are studied. Finite element analysis is used to model the stresses in the reinforcing pad and shell. The commercially available software package ANSYS is used for the modeling. Loadings on the nozzle are due to combinations of internal pressure and moments to simulate piping attachments. The finite element results are compared to an analysis per Welding Research Council Bulletin 107 [2].

This content is only available via PDF.
You do not currently have access to this content.