Recently experimental studies have been conducted using a novel form of the Taylor impact test consisting of sleeved cylinders. A soft material of known properties (OFHC Cu) was used for the core and the tight fitting sleeve was fabricated from the material of interest (AF1410 steel). On impact the mushrooming and sliding core places the sleeve in a stress state not normally found in Taylor impact testing. This paper describes a study conducted to evaluate the feasibility of backing out Johnson-Cook strength model coefficients from measured (post-test) deformed geometries of sleeved specimens using an explicit impact code (EPIC). In addition, modifications to the sleeved concept geometry (tapered and capped core) are also explored numerically as well as the sleeve/core sliding friction coefficient.

This content is only available via PDF.
You do not currently have access to this content.