The objective of this paper is to design an annular tank. The annular tank is to store various criticality liquids used in today’s industry. The initial over all dimensions of the annular tank are determined from the capacity of the stored liquids. The design function is performed using the ASME Code Sec VIII Div 1. The annular tank design is broken up into (a) outer cylinder, (b) inner cylinder, (c) top cover, and (d) bottom head. It is supported at the bottom. It is anchored at the top. The deflection of the annular space is a critical requirement. Stresses are usually acceptable because the requirement is on the deflection. For vacuum condition the outer cylinder can be treated for external pressure and the inner cylinder can be treated for internal pressure. For internal pressure condition the design pressure consists of working internal pressure plus static head. For this the outer cylinder can be treated for internal pressure and the inner cylinder can be treated for external pressure. The covers are designed for internal pressure at the bottom where the pressure is the maximum. The designed dimensions are used to recalculate the stresses for the annular tank. The dimensioned annular tank is modeled using STAAD III finite element Software. The stresses from the finite element Software are compared to the stresses obtained from recalculated stresses obtained using ASME Code Sec VIII Div 1. The difference in the stress values is explained. This paper’s main objective is to compare the ASME Code to the finite element analysis. The design is found to be safe for the specific configuration considered. In addition the annular tank is checked for temperature and seismic load conditions, which the code does not address.
Skip Nav Destination
ASME 2003 Pressure Vessels and Piping Conference
July 20–24, 2003
Cleveland, Ohio, USA
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
0-7918-1694-X
PROCEEDINGS PAPER
Finite Element Analysis and Design of an Annular Tank Available to Purchase
Yogeshwar Hari
Yogeshwar Hari
University of North Carolina at Charlotte, Charlotte, NC
Search for other works by this author on:
Yogeshwar Hari
University of North Carolina at Charlotte, Charlotte, NC
Paper No:
PVP2003-1782, pp. 187-194; 8 pages
Published Online:
August 13, 2008
Citation
Hari, Y. "Finite Element Analysis and Design of an Annular Tank." Proceedings of the ASME 2003 Pressure Vessels and Piping Conference. Pressure Vessel and Piping Codes and Standards. Cleveland, Ohio, USA. July 20–24, 2003. pp. 187-194. ASME. https://doi.org/10.1115/PVP2003-1782
Download citation file:
18
Views
Related Proceedings Papers
Related Articles
Nonlinear Buckling and Postbuckling Behavior of 3D Braided Composite Cylindrical Shells Under External Pressure Loads in Thermal Environments
J. Pressure Vessel Technol (December,2009)
Blast Wave Loading Pathways in Heterogeneous Material Systems–Experimental and Numerical Approaches
J Biomech Eng (June,2013)
Solder Creep-Fatigue Interactions With Flexible Leaded Parts
J. Electron. Packag (June,1992)
Related Chapters
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler & Pressure Vessel Code, Volume 1, Second Edition
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Third Edition
Background Information
Guidebook for the Design of ASME Section VIII Pressure Vessels, Third Edition