The dynamic response of Timoshenko beam structures is solved by using the DQEM to the space discretization and EDQ to the time discretization. In the DQEM discretization, DQ is used to define the discrete element model. Discrete dynamic equilibrium equations defined at interior nodes in all elements, transition conditions defined on the inter-element boundary of two adjacent elements and boundary conditions at the structural boundary form a dynamic equation system at a specified time stage. The dynamic equilibrium equation system is solved by the direct time integration schemes of time-element by time-element method and stages by stages method which are developed by using EDQ and DQ. Numerical results obtained by the developed numerical algorithms are presented. They demonstrate the developed numerical solution procedure.

This content is only available via PDF.
You do not currently have access to this content.