Aging gas and oil transmission pipeline infrastructure has led to the need for improved integrity assessment. Presently, external and internal corrosion defects are the leading cause of pipeline failure in Canada, and in many other countries around the world. The currently accepted defect assessment procedures have been shown to be conservative, with the degree of conservatism varying with the defect dimensions. To address this issue, a multi-level corrosion defect assessment procedure has been proposed. The assessment levels are organized in terms of increasing complexity; with three-dimensional elastic-plastic Finite Element Analysis (FEA) proposed as the highest level of assessment. This method requires the true stress-strain curve of the material, as determined from uniaxial tensile tests, and the corrosion defect geometry to assess the burst pressure of corrosion defects. The use of non-linear FEA to predict the failure pressure of real corrosion defects has been investigated using the results from 25 burst tests on pipe sections removed from service due to the presence of corrosion defects. It has been found that elastic-plastic FEA provides an accurate prediction of the burst pressure and failure location of complex-shaped corrosion defects. Although this approach requires detailed information regarding the corrosion geometry, it is appropriate for cases where an accurate burst pressure prediction is necessary.
Skip Nav Destination
ASME 2002 Pressure Vessels and Piping Conference
August 5–9, 2002
Vancouver, BC, Canada
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
0-7918-4652-0
PROCEEDINGS PAPER
Finite Element Analysis of Complex Corrosion Defects
Duane S. Cronin
Duane S. Cronin
University of Waterloo, Waterloo, Ontario, Canada
Search for other works by this author on:
Duane S. Cronin
University of Waterloo, Waterloo, Ontario, Canada
Paper No:
PVP2002-1288, pp. 55-61; 7 pages
Published Online:
August 14, 2008
Citation
Cronin, DS. "Finite Element Analysis of Complex Corrosion Defects." Proceedings of the ASME 2002 Pressure Vessels and Piping Conference. Computational Mechanics: Developments and Applications. Vancouver, BC, Canada. August 5–9, 2002. pp. 55-61. ASME. https://doi.org/10.1115/PVP2002-1288
Download citation file:
27
Views
Related Proceedings Papers
Related Articles
Bending Capacity Analyses of Corroded Pipeline
J. Offshore Mech. Arct. Eng (May,2012)
Prediction of Failure Pressures in Pipelines With Corrosion Defects
J. Pressure Vessel Technol (May,2008)
About the Influence of the Corrosion Defect Geometry on Repaired Pipes Stress Distribution
J. Pressure Vessel Technol (February,2021)
Related Chapters
Transportation Pipelines, Including ASME B31.4, B31.8, B31.8S, B31G, and B31Q Codes
Online Companion Guide to the ASME Boiler & Pressure Vessel Codes
STRUCTURAL RELIABILITY ASSESSMENT OF PIPELINE GIRTH WELDS USING GAUSSIAN PROCESS REGRESSION
Pipeline Integrity Management Under Geohazard Conditions (PIMG)
Siphon Seals and Water Legs
Hydraulics, Pipe Flow, Industrial HVAC & Utility Systems: Mister Mech Mentor, Vol. 1