Aging gas and oil transmission pipeline infrastructure has led to the need for improved integrity assessment. Presently, external and internal corrosion defects are the leading cause of pipeline failure in Canada, and in many other countries around the world. The currently accepted defect assessment procedures have been shown to be conservative, with the degree of conservatism varying with the defect dimensions. To address this issue, a multi-level corrosion defect assessment procedure has been proposed. The assessment levels are organized in terms of increasing complexity; with three-dimensional elastic-plastic Finite Element Analysis (FEA) proposed as the highest level of assessment. This method requires the true stress-strain curve of the material, as determined from uniaxial tensile tests, and the corrosion defect geometry to assess the burst pressure of corrosion defects. The use of non-linear FEA to predict the failure pressure of real corrosion defects has been investigated using the results from 25 burst tests on pipe sections removed from service due to the presence of corrosion defects. It has been found that elastic-plastic FEA provides an accurate prediction of the burst pressure and failure location of complex-shaped corrosion defects. Although this approach requires detailed information regarding the corrosion geometry, it is appropriate for cases where an accurate burst pressure prediction is necessary.

This content is only available via PDF.
You do not currently have access to this content.