Skip Nav Destination
Proceedings Papers
In This Volume
Volume 1: Codes and Standards
Front Matter
Codes and Standards
ASME Code Section XI Activities
Simplified HTHA Evaluation Using Larson Miller Parameter Concepts
PVP 2021; V001T01A002https://doi.org/10.1115/PVP2021-62968
Topics:
Creep
,
Damage
,
Damage assessment
,
High temperature
,
Hydrogen
,
Methane
,
Pressure
,
Stress
,
Temperature
Developments in HDPE and Non-Metallic Pipe Codes and Standards
Environmental Fatigue Issues (Joint M and F)
Material and Temperature Effects in Low and High Cycle EAF of Austenitic Stainless Steels
PVP 2021; V001T01A006https://doi.org/10.1115/PVP2021-61507
Topics:
Cycles
,
Electric arc furnaces
,
Stainless steel
,
Temperature effects
,
Heat
,
Design
,
Temperature
,
Fatigue
,
Fatigue design
,
High cycle fatigue
A Method for Investigating Multi-Axial Fatigue in a PWR Environment
Peter Gill, Paul Onwuarolu, Russell Smith, Ben Coult, Mark Kirkham, Matt Sutcliffe, Karen Cooper, Tom Schofield, Colin Madew, Alec McLennan, Chris Currie
PVP 2021; V001T01A012https://doi.org/10.1115/PVP2021-62429
Topics:
Fatigue
,
Pressurized water reactors
,
Stress
,
Fatigue testing
,
Cycles
,
Failure
,
Finite element analysis
,
Cracking (Materials)
,
Fracture (Process)
,
Design
Negative R Fatigue Short Crack Growth Rate Testing on Austenitic Stainless Steels
Adam Griffiths, Peter Gill, Ben Coult, Jack Beswick, Norman Platts, Jonathan Mann, Chris Currie, Joe Airey
PVP 2021; V001T01A013https://doi.org/10.1115/PVP2021-62909
Topics:
Fatigue
,
Fracture (Materials)
,
Stainless steel
,
Testing
,
Grain size
,
Heat
,
Nucleation (Physics)
,
Stress
,
Analytical methods
,
ASME Standards
High Temperature Codes and Standards
Development of the Buckling Evaluation Method for Large Scale Vessel by the Testing of Gr. 91 Vessel Subjected to Horizontal and Cyclic Vertical Loading
PVP 2021; V001T01A016https://doi.org/10.1115/PVP2021-60672
Topics:
Buckling
,
Evaluation methods
,
Testing
,
Vessels
,
Stress
,
Shapes
,
Design
,
Fast neutron reactors
,
Plates (structures)
,
Power stations
Hydrogen Effects on Material Behavior for Structural Integrity Assessment (Joint MF-2)
A Newly Developed Measuring Principle for Precise Measurement of Forces in Test Autoclaves
PVP 2021; V001T01A018https://doi.org/10.1115/PVP2021-62072
Topics:
Force measurement
,
Friction
,
Gaskets
,
High pressure (Physics)
,
Hydrogen
,
Machinery
,
Materials properties
,
Materials testing
,
Pressure
,
Rods
Improvement of Flaw Characterization Rules for FFS
Assessment of the Resolution of Nonplanar Flaws in Pressure Retaining Components in Terms of Stress Intensity Factors
PVP 2021; V001T01A021https://doi.org/10.1115/PVP2021-60413
Topics:
Pressure
,
Resolution (Optics)
,
Stress
,
Fitness-for-service
,
Geometry
,
Acceptance criteria
,
Finite element methods
,
Fracture mechanics
,
Modeling
,
Shapes
Master Curve Method and Applications
Probabilistic and Risk-Informed Methods for Structural Integrity Assessment
A Multi-Scale Failure-Probability-and-NDE-Based Fatigue Life Model for Estimating Component Co-Reliability of Uncracked and Cracked Pipes
Jeffrey T. Fong, Pedro V. Marcal, Robert Rainsberger, N. Alan Heckert, James J. Filliben, Steven R. Doctor, Ned A. Finney, Jr.
PVP 2021; V001T01A029https://doi.org/10.1115/PVP2021-62169
Topics:
Failure
,
Fatigue
,
Fatigue life
,
Fracture (Materials)
,
Inspection
,
Modeling
,
Nondestructive evaluation
,
Pipes
,
Pressure vessels
,
Probability
Technical Basis for Increased Inspection Interval of Cold Leg Pressurized Water Reactor Dissimilar Metal Welds Using xLPR
PVP 2021; V001T01A030https://doi.org/10.1115/PVP2021-62560
Topics:
Inspection
,
Metals
,
Pressurized water reactors
,
Welded joints
,
Fracture (Materials)
,
Alloys
,
ASME Standards
,
Computers
,
Probability
,
Temperature
Probabilistic Fracture Mechanics Evaluation of a BWR Feedwater Nozzle
PVP 2021; V001T01A031https://doi.org/10.1115/PVP2021-62933
Topics:
ASME Standards
,
Boiling water reactors
,
Feedwater
,
Fracture mechanics
,
Inspection
,
Nozzles
,
Shells
Recent Developments in ASME Codes and Standards
A Probabilistic Margin Assessment of the ASME Section III, Division 5 Primary Load Design Rules for Class A Components
PVP 2021; V001T01A033https://doi.org/10.1115/PVP2021-61570
Topics:
Design
,
Stress
,
Steady state
,
Temperature
,
ASME Boiler and Pressure Vessel Code
,
Creep
,
Creeping flow
,
Deformation
,
Geometry
,
High temperature
A Viscoplastic Model for Alloy 617 for Use With the ASME Section III, Division 5 Design by Inelastic Analysis Rules
PVP 2021; V001T01A034https://doi.org/10.1115/PVP2021-61607
Topics:
Alloys
,
Design
,
Inelastic analysis
,
Creep
,
Deformation
,
Fatigue
,
ASME Boiler and Pressure Vessel Code
,
Computer software
,
Databases
,
Elastic analysis
Recent Developments in Chinese Codes and Standards
Research on Characterization Method of Pressure Equipment Accident
PVP 2021; V001T01A045https://doi.org/10.1115/PVP2021-61376
Topics:
Accidents
,
Pressure equipment
,
Radar
Safety Assessment of Long Term Serviced Pressure Vessels: A Case Study of Typical Refining and Chemical Plants in China
PVP 2021; V001T01A046https://doi.org/10.1115/PVP2021-61470
Topics:
China
,
Pressure vessels
,
Safety
,
Failure mechanisms
,
Risk
,
American Petroleum Institute
,
Design
,
Chemical industry
,
Damage
,
Governments
Failure Analysis and Intelligent Prevention and Control Technology of High Pressure Air Cooler in Hydrogen Environment
PVP 2021; V001T01A048https://doi.org/10.1115/PVP2021-61814
Topics:
Control systems
,
Failure analysis
,
High pressure (Physics)
,
Hydrogen
,
Corrosion
,
Erosion
,
Simulation
,
Water
,
Crystallization
,
Risk
Failure Analysis of a Cracked Stainless-Steel Steam-Water Separator
PVP 2021; V001T01A052https://doi.org/10.1115/PVP2021-62032
Topics:
Failure analysis
,
Pressure vessels
,
Stainless steel
,
Steam
,
Water
Recent Developments in Japanese Codes and Standards
Benchmark Analysis by Beremin Model and GTN Model in CAF Subcommittee
Takatoshi Hirota, Yasuto Nagoshi, Kiminobu Hojo, Hiroshi Okada, Akiyuki Takahashi, Jinya Katsuyama, Takashi Ueda, Takuya Ogawa, Kenji Yashirodai, Mitsuru Ohata, Fumiyoshi Minami
PVP 2021; V001T01A056https://doi.org/10.1115/PVP2021-61668
Evaluation of Brittle Crack Arrest Toughness for Highly-Irradiated Reactor Pressure Vessel Steels
Keiko Iwata, Kuniki Hata, Tohru Tobita, Takatoshi Hirota, Hisashi Takamizawa, Yasuhiro Chimi, Yutaka Nishiyama
PVP 2021; V001T01A059https://doi.org/10.1115/PVP2021-61893
Topics:
Brittleness
,
Fracture (Materials)
,
Fracture toughness
,
Notch testing
,
Reactor vessels
,
Steel
Repair, Replacement, and Mitigation for Fitness-for-Service Rules
Structural Integrity of Pressure Components
Steam Generator Grade P91 Steel Components Creep-Assessment By Test After Extended Service
Ottaviano Grisolia, Lorenzo Scano, Francesco Piccini, Antonietta Lo Conte, Massimiliano De Agostinis, Stefano Fini
PVP 2021; V001T01A062https://doi.org/10.1115/PVP2021-60160
Topics:
Boilers
,
Creep
,
Steel
,
Cavitation
,
Manifolds
,
Temperature
,
Tubing
,
Metals
,
Outflow
,
Performance