Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-2 of 2
Radar
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. ICONE20-POWER2012, Volume 4: Codes, Standards, Licensing, and Regulatory Issues; Fuel Cycle, Radioactive Waste Management and Decommissioning; Computational Fluid Dynamics (CFD) and Coupled Codes; Instrumentation and Controls; Fuels and Combustion, Materials Handling, Emissions; Advanced Energy Systems and Renewables (Wind, Solar, Geothermal); Performance Testing and Performance Test Codes, 653-660, July 30–August 3, 2012
Paper No: ICONE20-POWER2012-54884
Abstract
In the context of a plant modernization, developing digital I&C technology is a crucial challenge to improve nuclear plants safety and reliability. Digital technology is usually oriented to achieve functions such as plant control, monitoring, simulation and protection in a user-friendly way. On the other hand, the analogue instrumentation implemented in the so-called “old generation consoles” is often essential and not immediately or completely replaceable. As a consequence, the interaction between the analogue and digital data seems to be a necessary step before starting the digital I&C licensing process. The fundamental difference between analogue and digital technologies relies on the fact that digital logic is based on processors, hence it can be customized by programming its software. However, introducing new code can result in a new set of potential failure modes to be accounted for. As a consequence, original analogue systems mostly assure a higher level of protection with respect to digital systems. In this scenario, a benefit could arise from the use of Field-Programmable Gate Arrays (FPGAs), based on a hardware architecture whose routing is made via software, thus resulting in a variety of possible tasks. FPGAs’ employment ranges from automotive and industrial applications, ASIC prototyping, software defined radios, radar, image and DSP. In this work a critical analysis of FPGA fundamental features and potentialities in nuclear plant I&C design is achieved in conjunction with some practical applications. Troubles arising from coping with processor-based system are presented and compared to benefits and potentialities offered by FPGA real-time architectures: indeed, FPGAs comprise a higher number of logic blocks and functions able to manage parallel processes with self triggering, and provided into a “non-frozen” structure but easily reconfigurable. This characteristics of being in-system programmable (ISP), i.e. a device capable of being programmed while remaining resident in a high-level system, can be considered as the main advantage of using FPGA. The employment on a large scale is also justified by its high determinism and testability, leading to high performance in terms of reliability. As a case-study, we propose a supervisory full-digital system that has been designed, realized, tested and validated implementing a FPGA architecture to be used in parallel to the TRIGA nuclear reactor RC-1 analogue console at the ENEA Casaccia Research Centre in Rome. We report on the design choices, and on pros and cons of using FPGA instead of the classical processor-based architectures. This preliminary apparatus has been developed using the LABVIEW environment and FPGA-based technology, an appropriate tool to get across simulation to Hardware-in-the-Loop (HIL) technique allowing to move on production from prototyping.
Proceedings Papers
Proc. ASME. POWER2011, ASME 2011 Power Conference, Volume 2, 151-158, July 12–14, 2011
Paper No: POWER2011-55028
Abstract
This paper will address the application of Guided Wave Radar [GWR], also known as Time Domain Reflectometry [TDR], in your steam loop. Included will be discussions of how this technology functions and differs from more traditional forms of level indication. Real world applications will be discussed that highlight technology features, subsequent benefits and other relevant information.