Abstract
Zinc metal batteries are a widely considered alternative to lithium metal batteries that also suffer from dendrite growth. We explore the effect of creeping normal electrolyte flow on dendrite growth in zinc metal batteries using a transient model that predicts concentration distribution evolution and a linear stability analysis that predicts dendrite growth. Dendrite growth on zinc metal anodes can occur due to surface instabilities and/or concentration depletion. Creeping normal flow with a flow rate greater than the critical flow rate ensures stable plating and prevents ion depletion near the negative electrode, thus eliminating both causes of dendrite growth. Unlike lithium, increasing the flow rate does not necessarily reduce the electrostatic potential difference between the two electrodes, thus indicating the importance of ion diffusivity ratio in the electrolyte impedance.