Most studies involving the use of hydropower in an electric power system tend to consider the point of view of the system operator even though under liberalized markets in Europe, the operation of hydro units is set by the owner to maximize their profits. Such studies also often neglect uncertainties related to hydropower operation and instead assume perfect knowledge of the system conditions over the simulation horizon. This paper presents a methodology to overcome the aforementioned limitations. We optimize the operational choices of a hydropower cascade owner with multiple linked hydro assets and the ability to participate in several energy and reserve markets while also accounting for the impact of market price uncertainties on the owner’s operating decisions. The versatile optimization model created includes a detailed representation of any selected hydro cascade’s topology, constraints to reflect the machinery characteristics, and a rolling horizon approach to account for the price uncertainties in the daily operating schedule. The model is first validated using historical data for a hydro cascade in Switzerland and a perfect-knowledge approach. Next, price uncertainty is added to improve the historical simulation results and find a trade-off between accuracy and computational time.

This content is only available via PDF.
You do not currently have access to this content.