The continuous increase of variable renewable energy and fuel cost requires steam turbine power plants to operate with high flexibility. Furthermore, the reduction in electricity price is forcing many existing and new district heating power plants to further optimize the heat production to maintain a sustainable business. This situation leads to low pressure steam turbines running at very low volume flow for an extended time.

In this work, a case study of an existing 30 MWel district heating power plant located in Europe is presented. The customer request was the removal of the steam turbine last two stages along with the condenser to maximize steam delivery for district heating operations. However, based on the experience gained by GE on low load during the last years, the same heat production has been guaranteed without any significant impact on the existing unit, excluding any major modification of the plant layout such as last stage blading and condenser removal. Making use of the latest low flow modeling, the minimum cooling flow through the low-pressure turbine has been reduced by more than 90% compared to the existing unit. Optimization of the hood spray system and logic will reduce trailing edge erosion during low load operation leading to a significant extension in the last stage blade lifetime. These modifications, commercialized by GE as the Advanced Low Load Package (ALLP), provide a cheap, flexible and effective solution for the customer.

With today’s knowledge, GE has the capability to guarantee low load operation minimizing the mass flow through the low-pressure turbine to the minimum required for safe operation. As a benefit to the customer, this option allows a gain in operational income of about 1.5 M€ per year.

This content is only available via PDF.
You do not currently have access to this content.