In the Gulf Cooperation Council region, approximately 70% of the thermal power plants are in a simple cycle configuration while only 30% are in combined cycle. This high simple to combined cycle ratio makes it of a particular interest for original equipment manufacturers to offer exhaust heat recovery upgrades to enhance the thermal efficiency of simple cycle power plants. This paper aims to evaluate the potential of incorporating costly-effective new developed heat recovery methods, rather than the complex products which are commonly available in the market, with relevant high cost such as heat recovery steam generators.

In this work, the utilization of extracted heat was categorized into three implementation zones: use within the gas turbine flange-to-flange section, auxiliary systems and outside the gas turbine system in the power plant. A new methodology was established to enable qualitative and comparative analyses of the system performance of two heat extraction inventions according to the criteria of effectiveness, safety and risk and the pressure drop in the exhaust. Based on the conducted analyses, an integrated heat recovery system was proposed. The new system incorporates a circular duct heat exchanger to extract the heat from the exhaust stack and deliver the intermediary heat transfer fluid to a separate fuel gas exchanger. This system showed superiority in improving the thermodynamic cycle efficiency, while mitigating safety risks and avoiding undesired exhaust system pressure drop.

This content is only available via PDF.
You do not currently have access to this content.